Header Ads

Small Single-Engine Aircraft Electrical System

Light aircraft typically have a relatively simple electrical system because simple aircraft generally require less redundancy and less complexity than larger transport category aircraft. On most light aircraft, there is only one electrical system powered by the engine-driven alternator or generator. The aircraft battery is used for emergency power and engine starting. Electrical power is typically distributed through one or more common points known as an electrical bus (or bus bar).

Almost all electrical circuits must be protected from faults that can occur in the system. Faults are commonly known as opens or shorts. An open circuit is an electrical fault that occurs when a circuit becomes disconnected. A short circuit is an electrical fault that occurs when one or more circuits create an unwanted connection. The most dangerous short circuit occurs when a positive wire creates an unwanted connection to a negative connection or ground. This is typically called a short to ground.

There are two ways to protect electrical systems from faults: mechanically and electrically. Mechanically, wires and components are protected from abrasion and excess wear through proper installation and by adding protective covers and shields. Electrically, wires can be protected using circuit breakers and fuses. The circuit breakers protect each system in the event of a short circuit. It should be noted that fuses can be used instead of circuit breakers. Fuses are typically found on older aircraft. A circuit breaker panel from a light aircraft is shown in Figure 1.

Aircraft Electrical System
Figure 1. Light aircraft circuit breaker panel

Battery Circuit


The aircraft battery and battery circuit is used to supply power for engine starting and to provide a secondary power supply in the event of an alternator (or generator) failure. A schematic of a typical battery circuit is shown in Figure 2. This diagram shows the relationship of the starter and external power circuits. The bold lines found on the diagram represent large wire (see the wire leaving the battery positive connection), which is used in the battery circuit due to the heavy current provided through these wires. Because batteries can supply large current flows, a battery is typically connected to the system through an electrical solenoid. At the start/end of each flight, the battery is connected/disconnected from the electrical distribution bus through the solenoid contacts. A battery master switch on the flight deck is used to control the solenoid.


Aircraft Electrical System
Figure 2. Schematic of typical battery circuit

Although they are very similar, there is often confusion between the terms “solenoid” and “relay.” A solenoid is typically used for switching high current circuits and relays used to control lower current circuits. To help illuminate the confusion, the term “contactor” is often used when describing a magnetically operated switch. For general purposes, an aircraft technician may consider the terms relay, solenoid, and contactor synonymous. Each of these three terms may be used on diagrams and schematics to describe electrical switches controlled by an electromagnet.

Here it can be seen that the battery positive wire is connected to the electrical bus when the battery master switch is active. A battery solenoid is shown in Figure 3. The battery switch is often referred to as the master switch since it turns off or on virtually all electrical power by controlling the battery connection. Note how the electrical connections of the battery solenoid are protected from electrical shorts by rubber covers at the end of each wire.

Aircraft Electrical System
Figure 3. Battery solenoid

The ammeter shown in the battery circuit is used to monitor the current flow from the battery to the distribution bus. When all systems are operating properly, battery current should flow from the main bus to the battery giving a positive indication on the ammeter. In this case, the battery is being charged. If the aircraft alternator (or generator) experiences a malfunction, the ammeter indicates a negative value. A negative indication means current is leaving the battery to power any electrical load connected to the bus. The battery is being discharged and the aircraft is in danger of losing all electrical power.


Generator Circuit


Generator circuits are used to control electrical power between the aircraft generator and the distribution bus. Typically, these circuits are found on older aircraft that have not upgraded to an alternator. Generator circuits control power to the field winding and electrical power from the generator to the electrical bus. A generator master switch is used to turn on the generator typically by controlling field current. If the generator is spinning and current is sent to the field circuit, the generator produces electrical power. The power output of the generator is controlled through the generator control unit (or voltage regulator). A simplified generator control circuit is shown in Figure 4. As can be seen in Figure 4, the generator switch controls the power to the generator field (F terminal). The generator output current is supplied to the aircraft bus through the armature circuit (A terminal) of the generator.

Aircraft Electrical System
Figure 4. Simplified generator control circuit

Alternator Circuit


Alternator circuits, like generator circuits, must control power both to and from the alternator. The alternator is controlled by the pilot through the alternator master switch. The alternator master switch in turn operates a circuit within the alternator control unit (or voltage regulator) and sends current to the alternator field. If the alternator is powered by the aircraft engine, the alternator produces electrical power for the aircraft electrical loads. The alternator control circuit contains the three major components of the alternator circuit: alternator, voltage regulator, and alternator master switch. [Figure 5]

Aircraft Electrical System
Figure 5. Alternator control circuit


The voltage regulator controls the generator field current according to aircraft electrical load. If the aircraft engine is running and the alternator master switch is on, the voltage regulator adjusts current to the alternator field as needed. If more current flows to the alternator field, the alternator output increases and feeds the aircraft loads through the distribution bus.

All alternators must be monitored for correct output. Most light aircraft employ an ammeter to monitor alternator output. Figure 6 shows a typical ammeter circuit used to monitor alternator output. An ammeter placed in the alternator circuit is a single polarity meter that shows current flow in only one direction. This flow is from the alternator to the bus. Since the alternator contains diodes in the armature circuit, current cannot reverse flow from the bus to the alternator.

Aircraft Electrical System
Figure 6. Typical ammeter circuit used to monitor alternator output


When troubleshooting an alternator system, be sure to monitor the aircraft ammeter. If the alternator system is inoperative, the ammeter gives a zero indication. In this case, the battery is being discharged. A voltmeter is also a valuable tool when troubleshooting an alternator system. The voltmeter should be installed in the electrical system while the engine is running and the alternator operating. A system operating normally produces a voltage within the specified limits (approximately 14 volts or 28 volts depending on the electrical system). Consult the aircraft manual and verify the system voltage is correct. If the voltage is below specified values, the charging system should be inspected.


External Power Circuit


Many aircraft employ an external power circuit that provides a means of connecting electrical power from a ground source to the aircraft. External power is often used for starting the engine or maintenance activities on the aircraft. This type of system allows operation of various electrical systems without discharging the battery. The external power systems typically consists of an electrical plug located in a convenient area of the fuselage, an electrical solenoid used to connect external power to the bus, and the related wiring for the system. A common external power receptacle is shown in Figure 7.

Aircraft Electrical System
Figure 7. External power receptacle


Figure 8 shows how the external power receptacle connects to the external power solenoid through a reverse polarity diode. This diode is used to prevent any accidental connection in the event the external power supply has the incorrect polarity (i.e., a reverse of the positive and negative electrical connections). A reverse polarity connection could be catastrophic to the aircraft’s electrical system. If a ground power source with a reverse polarity is connected, the diode blocks current and the external power solenoid does not close.

Aircraft Electrical System
Figure 8. A simple external power circuit diagram

This diagram also shows that external power can be used to charge the aircraft battery or power the aircraft electrical loads. For external power to start the aircraft engine or power electrical loads, the battery master switch must be closed.

Starter Circuit


Virtually all modern aircraft employ an electric motor to start the aircraft engine. Since starting the engine requires several horsepower, the starter motor can often draw 100 or more amperes. For this reason, all starter motors are controlled through a solenoid. [Figure 9]

Aircraft Electrical System
Figure 9. Starter circuit

The starter circuit must be connected as close as practical to the battery since large wire is needed to power the starter motor and weight savings can be achieved when the battery and the starter are installed close to each other in the aircraft. As shown in the starter circuit diagram, the start switch can be part of a multifunction switch that is also used to control the engine magnetos. [Figure 10]

Aircraft Electrical System
Figure 10. Multifunction starter switch

The starter can be powered by either the aircraft battery or the external power supply. Often when the aircraft battery is weak or in need of charging, the external power circuit is used to power the starter. During most typical operations, the starter is powered by the aircraft battery. The battery master must be on and the master solenoid closed in order to start the engine with the battery.

Avionics Power Circuit


Many aircraft contain a separate power distribution bus specifically for electronics equipment. This bus is often referred to as an avionics bus. Since modern avionics equipment employs sensitive electronic circuits, it is often advantageous to disconnect all avionics from electrical power to protect their circuits. For example, the avionics bus is often depowered when the starter motor is activated. This helps to prevent any transient voltage spikes produced by the starter from entering the sensitive avionics. [Figure 11]

Aircraft Electrical System
Figure 11. Avionics power circuit

The circuit employs a normally closed (NC) solenoid that connects the avionics bus to the main power bus. The electromagnet of the solenoid is activated whenever the starter is engaged. Current is sent from the starter switch through Diode D1, causing the solenoid to open and depower the avionics bus. At that time, all electronics connected to the avionics bus will lose power. The avionics contactor is also activated whenever external power is connected to the aircraft. In this case, current travels through diodes D2 and D3 to the avionics bus contactor.

A separate avionics power switch may also be used to disconnect the entire avionics bus. A typical avionics power switch is shown wired in series with the avionics power bus. In some cases, this switch is combined with a circuit breaker and performs two functions (called a circuit breaker switch). It should also be noted that the avionics contactor is often referred to as a split bus relay, since the contactor separates (splits) the avionics bus from the main bus.

Landing Gear Circuit


Another common circuit found on light aircraft operates the retractable landing gear systems on high-performance light aircraft. These airplanes typically employ a hydraulic system to move the gear. After takeoff, the pilot moves the gear position switch to the retract position, starting an electric motor. The motor operates a hydraulic pump, and the hydraulic system moves the landing gear. To ensure correct operation of the system, the landing gear electrical system is relatively complex. The electrical system must detect the position of each gear (right, left, nose) and determine when each reaches full up or down; the motor is then controlled accordingly. There are safety systems to help prevent accidental actuation of the gear.

A series of limit switches are needed to monitor the position of each gear during the operation of the system. (A limit switch is simply a spring-loaded, momentary contact switch that is activated when a gear reaches it limit of travel.) Typically, there are six limit switches located in the landing gear wheel wells. The three up-limit switches are used to detect when the gear reaches the full retract (UP) position. Three down-limit switches are used to detect when the gear reach the full extended (DOWN) position. Each of these switches is mechanically activated by a component of the landing gear assembly when the appropriate gear reaches a given limit.

The landing gear system must also provide an indication to the pilot that the gear is in a safe position for landing. Many aircraft employ a series of three green lights when all three gears are down and locked in the landing position. These three lights are activated by the up- and down-limit switches found in the gear wheel well. A typical instrument panel showing the landing gear position switch and the three gears down indicators is shown in Figure 12.

Aircraft Electrical System
Figure 12. Instrument panel showing the landing gear position switch 
and the three gear down indicators

The hydraulic motor/pump assembly located in the upper left corner of Figure 13 is powered through either the UP or DOWN solenoids (top left). The solenoids are controlled by the gear selector switch (bottom left) and the six landing gear limit switches (located in the center of Figure 13). The three gear DOWN indicators are individual green lights (center of Figure 13) controlled by the three gear DOWN switches. As each gear reaches its DOWN position, the limit switch moves to the DOWN position, and the light is illuminated.

Aircraft Electrical System
Figure 13. Aircraft landing gear schematic while gear is in the DOWN and locked position

Figure 13 shows the landing gear in the full DOWN position. It is always important to know gear position when reading landing gear electrical diagrams. Knowing gear position helps the technician to analyze the diagram and understand correct operation of the circuits. Another important concept is that more than one circuit is used to operate the landing gear. On this system, there is a low current control circuit fused at 5 amps (CB2, top right of Figure 13). This circuit is used for indicator lights and the control of the gear motor contactors. There is a separate circuit to power the gear motor fused at 30 amps (CB3, topright of Figure 13). Since this circuit carries a large current flow, the wires would be as short as practical and carefully protected with rubber boots or nylon insulators.

The following paragraphs describe current flow through the landing gear circuit as the system moves the gear up and down. Be sure to refer to Figure 14 often during the following discussions. Figure 14 shows current flow when the gear is traveling to the extend (DOWN) position. Current flow is highlighted in red for each description.

Aircraft Electrical System
Figure 14. Landing gear moving down diagram

To run the gear DOWN motor, current must flow in the control circuit leaving CB2 through terminal 1 to the NOT DOWN contacts of the DOWN limit switches, through terminal 3, to the DOWN solenoid positive terminal (upper left). The negative side of the DOWN solenoid coil is connected to ground through the gear selector switch. Remember, the gear DOWN switches are wired in parallel and activated when the gear reach the full-DOWN position. All three gears must reach full-DOWN to shut off the gear DOWN motor. Also note that the gear selector switch controls the negative side of the gear solenoids. The selector switch has independent control of the gear UP and DOWN motors through control of the ground circuit to both the UP and DOWN solenoids.

When the landing gear control circuit is sending a positive voltage to the DOWN solenoid, and the gear selector switch is sending negative voltage, the solenoid magnet is energized. When the gear-DOWN solenoid is energized, the high-current gear motor circuit sends current from CB1 through the down solenoid contact points to the gear DOWN motor. When the motor runs, the hydraulic pump produces pressure and the gear begins to move. When all three gears reach the DOWN position, the gear-DOWN switches move to the DOWN position, the three green lights illuminate, and the gear motor turns off completing the gear-DOWN cycle.

Aircraft Electrical System
Figure 15. Aircraft landing gear schematic while gear is moving to the UP position

Figure 15 shows the landing gear electrical diagram with the current flow path shown in red as the gear moves to the retract (UP) position. Starting in the top right corner of the diagram, current must flow through CB2 in the control circuit through terminal 1 to each of the three gear-UP switches. With the gear-UP switches in the not UP position, current flows to terminal 2 and eventually through the squat switch to the UP solenoid electromagnet coil. The UP solenoid coil receives negative voltage through the gear selector switch. With the UP solenoid coil activated, the UP solenoid closes and power travels through the motor circuit. To power the motor, current leaves the bus through CB1 to the terminal at the DOWN solenoid onward through the UP solenoid to the UP motor. (Remember, current cannot travel through the DOWN solenoid at this time since the DOWN solenoid is not activated.) As the UP motor runs, each gear travels to the retract position. As this occurs, the gear UP switches move from the NOT UP position to the UP position. When the last gear reaches up, the current no longer travels to terminal 2 and the gear motor turns off. It should be noted that similar to DOWN, the gear switches are wired in parallel, which means the gear motor continues to run until all three gear reach the required position.

During both the DOWN and UP cycles of the landing gear operation, current travels from the limit switches to terminal 2. From terminal 2, there is a current path through the gear selector switch to the gear unsafe light. If the gear selector disagrees with the current gear position (e.g., gear is DOWN and pilot has selected UP), the unsafe light is illuminated. The gear unsafe light is shown at the bottom of Figure 15.

The squat switch (shown mid left of Figure 15) is used to determine if the aircraft is on the GROUND or in FLIGHT. This switch is located on a landing gear strut. When the weight of the aircraft compresses the strut, the switch is activated and moved to the GROUND position. When the switch is in the GROUND position, the gear cannot be retracted and a warning horn sounds if the pilot selects gear UP. The squat switch is sometimes referred to as the weight-on-wheels switch.

A throttle switch is also used in conjunction with landing gear circuits on most aircraft. If the throttle is retarded (closed) beyond a certain point, the aircraft descends and eventually lands. Therefore, many manufacturers activate a throttle switch whenever engine power is reduced. If engine power is reduced too low, a warning horn sounds telling the pilot to lower the landing gear. Of course, this horn need not sound if the gear is already DOWN or the pilot has selected the DOWN position on the gear switch. This same horn also sounds if the aircraft is on the ground, and the gear handle is moved to the UP position. Figure 15 shows the gear warning horn in the bottom left corner.

AC Supply


Many modern light aircraft employ a low-power AC electrical system. Commonly, the AC system is used to power certain instruments and some lighting that operate only using AC. The electroluminescent panel has become a popular lighting system for aircraft instrument panels and requires AC. Electroluminescent lighting is very efficient and lightweight; therefore, excellent for aircraft installations. The electroluminescent material is a paste-like substance that glows when supplied with a voltage. This material is typically molded into a plastic panel and used for lighting.

Aircraft Electrical System
Figure 16. A static inverter

A device called an inverter is used to supply AC when needed for light aircraft. Simply put, the inverter changes DC into AC. Two types of inverters may be found on aircraft: rotary inverters and static inverters. Rotary inverters are found only on older aircraft due to its poor reliability, excess weight, and inefficiency. The rotary inverters employee a DC motor that spins an AC generator. The unit is typically one unit and contains a voltage regulator circuit to ensure voltage stability. Most aircraft have a modern static inverter instead of a rotary inverter. Static inverters, as the name implies, contain no moving parts and use electronic circuitry to convert DC to AC. Figure 16 shows a static inverter. Whenever AC is used on light aircraft, a distribution circuit separated from the DC system must be employed. [Figure 17]

Aircraft Electrical System
Figure 17. Distribution circuit

No comments

Powered by Blogger.